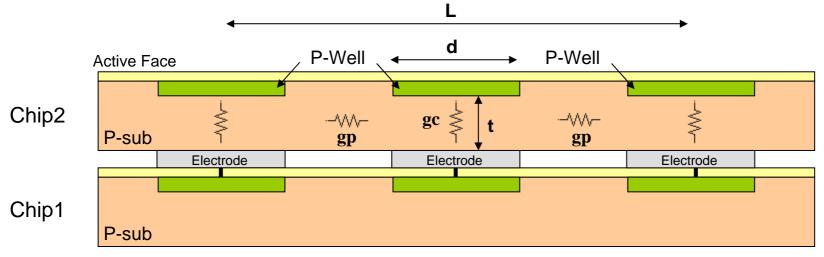


Signal Transmission method between stacked chips with resistive-coupling (Patented in Japan)


May, 2009 Sorbus Memory, Inc.

Resistive-Coupling

Signal transmission through the substrate resistance

Coupling from chip1 to chip2 through the backside electrode of chip2 and the substrate resistance of chip1. (VDD/VSS are supplied from wire-bonding or TSV.)

$$gc = \pi d^2 / (4 \rho sub t)$$

$$2gp = 2 \pi t / (\rho sub \cdot ln(L/d))$$

$$gc /gp = (d/2t)^2 \ln(L/d)$$

Voltage transfer coefficient

$$Av = 1 / \{1 + (gc/gp)^{-1}\}$$

$$Av = 0.5$$
 at d=2t, L=3d

gc,gp: conductance ρ sub: sub resistivity

Should operate alternately

Comparison Table

	Substrate Resistive-Coupling	Inductive-Coupling	Wire-Bonding
Structure	Active Face Sub electrode	Active Face Sub	Pad Bonding wire
Power	<mark>⊚</mark> ≒1.1mW	× ≒2.8 ~ 6.0mW	<u>△</u> ≒3.0mW
Voltage Transfer coefficient	○ ≒0.5	× <0.1	O 1.0 (0.5, if terminated)
Frequency Characteristic	<mark>⊚</mark> ≒2GHz	<u>∆</u> ≒1GHz	<u>∆</u> ≒1GHz
Layout Flexibility	©	©	×