Signal Transmission method between stacked chips with resistive-coupling (Patented in Japan) May, 2009 Sorbus Memory, Inc. ## **Resistive-Coupling** ## Signal transmission through the substrate resistance Coupling from chip1 to chip2 through the backside electrode of chip2 and the substrate resistance of chip1. (VDD/VSS are supplied from wire-bonding or TSV.) $$gc = \pi d^2 / (4 \rho sub t)$$ $$2gp = 2 \pi t / (\rho sub \cdot ln(L/d))$$ $$gc /gp = (d/2t)^2 \ln(L/d)$$ Voltage transfer coefficient $$Av = 1 / \{1 + (gc/gp)^{-1}\}$$ $$Av = 0.5$$ at d=2t, L=3d gc,gp: conductance ρ sub: sub resistivity Should operate alternately ## **Comparison Table** | | Substrate
Resistive-Coupling | Inductive-Coupling | Wire-Bonding | |------------------------------------|---------------------------------|--------------------------|-------------------------------| | Structure | Active Face Sub electrode | Active Face Sub | Pad Bonding wire | | Power | <mark>⊚</mark>
≒1.1mW | ×
≒2.8 ~ 6.0mW | <u>△</u>
≒3.0mW | | Voltage
Transfer
coefficient | ○
≒0.5 | ×
<0.1 | O
1.0 (0.5, if terminated) | | Frequency
Characteristic | <mark>⊚</mark>
≒2GHz | <u>∆</u>
≒1GHz | <u>∆</u>
≒1GHz | | Layout
Flexibility | © | © | × |